

M6-02: Coefficient Coefficient in Python

Part of the "Towards Machine Learning" Learning Badge
Video Walkthrough: <u>https://discovery.cs.illinois.edu/m6-02/</u>

Classical Dataset: "The Diamond Dataset"

Source: https://ggplot2.tidyverse.org/reference/diamonds.html

Description: A dataset containing the prices and other attributes of almost 54,000 diamonds. The dataset includes ten different columns of data:

- **price**, price in US dollars (\$326 \$18,823)
- **carat**, weight of the diamond (0.2 5.01)
- **cut**, quality of the cut (Fair, Good, Very Good, Premium, Ideal)
- color, diamond colour, from J (worst) to D (best)
- **clarity**, a measurement of how clear the diamond is (I1, SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
- **x**, length in mm (0 10.74)
- **y**, width in mm (0 58.9)
- **z**, depth in mm (0 31.8)
- **depth**, total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
- **table**, width of top of diamond relative to widest point (43--95)
- Available: <u>https://waf.cs.illinois.edu/discovery/diamonds.csv</u>

Exploratory Data Analysis

With such a large dataset, it's worth exploring some trends in this dataset. I'm specifically interested in the relationship between the size (carat) and price of diamonds:

Part of the "Towards Machine Learning" Learning Badge
Video Walkthrough: <u>https://discovery.cs.illinois.edu/m6-02/</u>

Correlation Coefficient in Python

In Python, the following code will display the correlation coefficient for every numeric column (variable) in a DataFrame:

Python:	<pre>df = pd.read_csv("https://waf.cs.illinois.edu/discovery/diamonds.csv") df.corr()</pre>							
Result:		carat	depth	table	price	x	у	z
	carat	1.00	0.03	0.18	0.92	0.98	0.95	0.95
	depth	0.03	1.00	-0.26	-0.01	-0.03	-0.03	-0.09
	table	0.18	-0.26	1.00	0.13	0.20	0.18	0.15
	price	0.92	-0.01	0.13	1.00	0.88	0.87	0.86
	x	0.98	-0.03	0.20	0.88	1.00	0.97	0.97
	у	0.95	-0.03	0.18	0.87	0.97	1.00	0.95
	z	0.95	-0.09	0.15	0.86	0.97	0.95	1.00

Observations:

- 1. This table has a special name:
- 2. What is special about the **main diagonal** of this matrix?
- 3. What does a correlation coefficient of **1.00** (*r*=1) mean?
- 4. What is **always true** about the **upper triangular** region and the **lower triangular** region?
- 5. The correlation coefficient between **carat** and **price** is _____. What does this tell us?
- 6. The correlation coefficient between **table** and **depth** is _____. What does this tell us?
- 7. The correlation coefficient between **depth** and **price** is _____. What does this tell us?